Time-Domain Microfluidic Fluorescence Lifetime Flow Cytometry for High-Throughput Förster Resonance Energy Transfer Screening
نویسندگان
چکیده
Sensing ion or ligand concentrations, physico-chemical conditions, and molecular dimerization or conformation change is possible by assays involving fluorescent lifetime imaging. The inherent low throughput of imaging impedes rigorous statistical data analysis on large cell numbers. We address this limitation by developing a fluorescence lifetime-measuring flow cytometer for fast fluorescence lifetime quantification in living or fixed cell populations. The instrument combines a time-correlated single photon counting epifluorescent microscope with microfluidics cell-handling system. The associated computer software performs burst integrated fluorescence lifetime analysis to assign fluorescence lifetime, intensity, and burst duration to each passing cell. The maximum safe throughput of the instrument reaches 3,000 particles per minute. Living cells expressing spectroscopic rulers of varying peptide lengths were distinguishable by Förster resonant energy transfer measured by donor fluorescence lifetime. An epidermal growth factor (EGF)-stimulation assay demonstrated the technique's capacity to selectively quantify EGF receptor phosphorylation in cells, which was impossible by measuring sensitized emission on a standard flow cytometer. Dual-color fluorescence lifetime detection and cell-specific chemical environment sensing were exemplified using di-4-ANEPPDHQ, a lipophilic environmentally sensitive dye that exhibits changes in its fluorescence lifetime as a function of membrane lipid order. To our knowledge, this instrument opens new applications in flow cytometry which were unavailable due to technological limitations of previously reported fluorescent lifetime flow cytometers. The presented technique is sensitive to lifetimes of most popular fluorophores in the 0.5-5 ns range including fluorescent proteins and is capable of detecting multi-exponential fluorescence lifetime decays. This instrument vastly enhances the throughput of experiments involving fluorescence lifetime measurements, thereby providing statistically significant quantitative data for analysis of large cell populations. © 2014 International Society for Advancement of Cytometry.
منابع مشابه
Noninvasive High-Throughput Single-Cell Analysis of HIV Protease Activity Using Ratiometric Flow Cytometry
To effectively fight against the human immunodeficiency virus infection/ acquired immunodeficiency syndrome (HIV/AIDS) epidemic, ongoing development of novel HIV protease inhibitors is required. Inexpensive high-throughput screening assays are needed to quickly scan large sets of chemicals for potential inhibitors. We have developed a Förster resonance energy transfer (FRET)-based, HIV protease...
متن کاملUnsupervised fluorescence lifetime imaging microscopy for high content and high throughput screening.
Proteomics and cellomics clearly benefit from the molecular insights in cellular biochemical events that can be obtained by advanced quantitative microscopy techniques like fluorescence lifetime imaging microscopy and Förster resonance energy transfer imaging. The spectroscopic information detected at the molecular level can be combined with cellular morphological estimators, the analysis of ce...
متن کاملVisual and high-throughput detection of cancer cells using a graphene oxide-based FRET aptasensing microfluidic chip.
Rapid and efficient measurement of cancer cells is a major challenge in early cancer diagnosis. In the present study, a miniature multiplex chip was created for in situ detection of cancer cells by implementing a novel graphene oxide (GO)-based Förster resonance energy transfer (FRET) biosensor strategy, i.e. assaying the cell-induced fluorescence recovery from the dye-labeled aptamer/graphene ...
متن کاملImaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET).
We report the implementation and exploitation of fluorescence polarization measurements, in the form of anisotropy fluorescence lifetime imaging microscopy (rFLIM) and energy migration Förster resonance energy transfer (emFRET) modalities, for wide-field, confocal laser-scanning microscopy and flow cytometry of cells. These methods permit the assessment of rotational motion, association and pro...
متن کاملScreening for protein-protein interactions using Förster resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM)
We present a high content multiwell plate cell-based assay approach to quantify protein interactions directly in cells using Förster resonance energy transfer (FRET) read out by automated fluorescence lifetime imaging (FLIM). Automated FLIM is implemented using wide-field time-gated detection, typically requiring only 10 s per field of view (FOV). Averaging over biological, thermal and shot noi...
متن کامل